The diversity of hundreds of thousands of potential organic pollutants and the lack of (publicly available) information about many of them is a huge challenge for environmental sciences, engineering, and regulation. Suspect screening based on high-resolution liquid chromatography-mass spectrometry (LC-HRMS) has enormous potential to help characterize the presence of these chemicals in our environment, enabling the detection of known and newly emerging pollutants, as well as their potential transformation products (TPs). Here, suspect list creation (focusing on pesticides relevant for Luxembourg, incorporating data sources in 4 languages) was coupled to an automated retrieval of related TPs from PubChem based on high confidence suspect hits, to screen for pesticides and their TPs in Luxembourgish river samples.
View Article and Find Full Text PDFPharmaceuticals and their transformation products (TPs) are continuously released into the aquatic environment via anthropogenic activity. To expand knowledge on the presence of pharmaceuticals and their known TPs in Luxembourgish rivers, 92 samples collected during routine monitoring events between 2019 and 2020 were investigated using nontarget analysis. Water samples were concentrated using solid-phase extraction and then analyzed using liquid chromatography coupled to a high-resolution mass spectrometer.
View Article and Find Full Text PDFShort α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion.
View Article and Find Full Text PDFInhibition of coagulation factor XII (FXII) activity represents an attractive approach for the treatment and prevention of thrombotic diseases. The few existing FXII inhibitors suffer from low selectivity. Using phage display combined to rational design, we developed a potent inhibitor of FXII with more than 100-fold selectivity over related proteases.
View Article and Find Full Text PDFMany naturally occurring cyclic peptides or derivatives thereof are used as therapeutics such as the human hormones vasopressin and oxytocin or the antibiotics vancomycin and daptomycin. The success of cyclic peptide therapeutics is based on their ability to bind with high affinity, their good target selectivity and their low toxicity. As nature provides cyclic peptides to only a small number of disease targets, strategies have been developed to generate cyclic peptide ligands with tailored specificity de novo.
View Article and Find Full Text PDF