Publications by authors named "P P Chang"

Objective: To evaluate the association between tumour size and the growth rate (GR) of small renal masses (SRMs) in patients managed by active surveillance (AS).

Materials And Methods: We queried the prospective, multi-institutional Delayed Intervention and Surveillance for Small Renal Masses (DISSRM) registry for patients on AS with an imaging interval of ≥6 months, identifying 456 patients. We tracked tumour size over time; a GR >0.

View Article and Find Full Text PDF

Introduction: Invasive pulmonary aspergillosis (IPA) increases the risk of mortality of critically ill patients. Diagnostic criteria specifically targeting patients in intensive care units(ICUs) have been developed to improve diagnostic sensitivity. This study investigated health outcomes among patients in ICUs with Aspergillus isolates identified using bronchoscopy.

View Article and Find Full Text PDF

TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis.

View Article and Find Full Text PDF

Background: Non-pharmaceutical interventions (NPIs) were widely used during the coronavirus disease 2019 (COVID-19) pandemic, however their impact on acute asthma exacerbations (AEs) is not well studied.

Methods: We had retrospectively collected patients with asthma AEs between 2019 and 2020 and retrieved data from the Chang Gung Research Database, including clinical manifestations, medications, pulmonary function, clinic and emergency department visits and hospitalizations.

Results: A total of 39,108 adult patients with asthma were enrolled, of whom 1502 were eligible for analysis.

View Article and Find Full Text PDF

Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.

View Article and Find Full Text PDF