Publications by authors named "P P Bashtrykov"

SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a major protein lysine methyltransferase trimethylating lysine 9 on histone H3 (H3K9) which is involved in heterochromatin formation and silencing of repeat elements (REs). It contains a unique Triple Tudor Domain (3TD), which specifically binds the dual modification of H3K14ac in the presence of H3K9me1/2/3. Here, we explored the role of the 3TD H3-tail interaction for the H3K9 methylation activity of SETDB1.

View Article and Find Full Text PDF

Epigenome editing is an emerging technology that allows to rewrite epigenome states and reprogram gene expression. Here, we have developed allele-specific DNA demethylation editing at gene promoters containing an SNP by sgRNA/dCas9 mediated recuitment of TET1. Maximal DNA demethylation (up to 90%) was observed 6 days after transient transfection of the epigenome editors and it was almost stable for 15 days.

View Article and Find Full Text PDF

DNA methylation is an important epigenetic modification that regulates chromatin structure and the cell-type-specific expression of genes. The association of aberrant DNA methylation with many diseases, as well as the increasing interest in modifying the methylation mark in a directed manner at genomic sites using epigenome editing for research and therapeutic purposes, increases the need for easy and efficient DNA methylation analysis methods. The standard approach to analyze DNA methylation with a single-cytosine resolution is bisulfite conversion of DNA followed by next-generation sequencing (NGS).

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR/Cas system has been adapted for precise epigenome editing, allowing targeted modifications at specific genomic sites.
  • This technology enables allele-specific epigenome editing, which silences mutated alleles while preserving healthy ones, making it promising for treating dominant mutation diseases and imprinting disorders.
  • The paper outlines a protocol using HEK293 cells to demonstrate allele-specific editing at the NARF gene, employing a combination of engineered proteins and plasmids for effective targeting and analysis.
View Article and Find Full Text PDF

The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids.

View Article and Find Full Text PDF