Metastatic tumors with moderate radiosensitivity account for most cancer-related deaths, highlighting the limitations of current radiotherapy regimens. The xCT-inhibitor sulfasalazine (SAS) sensitizes cancer cells to radiotherapy by blocking cystine uptake the xCT membrane antiporter, and thereby glutathione (GSH) synthesis protecting against radiation-induced oxidative stress. The expression of xCT in multiple tumor types implies it as a target generic to cancer rather than confined to few subtypes.
View Article and Find Full Text PDFBackground: Glioblastoma cells assemble to a syncytial communicating network based on tumor microtubes (TMs) as ultra-long membrane protrusions. The relationship between network architecture and transcriptional profile remains poorly investigated. Drugs that interfere with this syncytial connectivity such as meclofenamate (MFA) may be highly attractive for glioblastoma therapy.
View Article and Find Full Text PDFBackground: A major challenge in the follow-up of patients treated with stereotactic radiosurgery (SRS) for brain metastases (BM) is to distinguish pseudoprogression (PP) from tumor recurrence (TR). The aim of the study was to develop a clinical risk assessment score.
Methods: Follow-up images of 87 of 97 consecutive patients treated with SRS for 348 BM were analyzed.
The microenvironment and architecture of peritumoral tissue have been suggested to affect permissiveness for infiltration of malignant cells. Astrocytes constitute a heterogeneous population of cells and have been linked to proliferation, migration, and drug sensitivity of glioblastoma (GBM) cells. Through double-immunohistochemical staining for platelet-derived growth factor receptor α (PDGFRα) and glial fibrillary acidic protein (GFAP), this study explored the intercase variability among 45 human GBM samples regarding density of GFAP+ peritumoral astrocytes and a subset of GFAP+ peritumoral astrocyte-like cells also expressing PDGFRα.
View Article and Find Full Text PDFGlioblastoma (GBM) is a deadly disease with a need for deeper understanding and new therapeutic approaches. The microenvironment of glioblastoma has previously been shown to guide glioblastoma progression. In this study, astrocytes were investigated with regard to their effect on glioblastoma proliferation through correlative analyses of clinical samples and experimental in vitro and in vivo studies.
View Article and Find Full Text PDF