Publications by authors named "P O Sukhachov"

New unconventional compensated magnets with a p-wave spin polarization protected by a composite time-reversal translation symmetry have been proposed in the wake of altermagnets. To facilitate the experimental discovery and applications of these unconventional magnets, we construct an effective analytical model. The effective model is based on a minimal tight-binding model for unconventional p-wave magnets that clarifies the relation to other magnets with p-wave spin-polarized bands.

View Article and Find Full Text PDF

We evaluate the differential conductance measured in an STM setting at arbitrary electron transmission between STM tip and a 2D superconductor with arbitrary gap structure. Our analytical scattering theory accounts for Andreev reflections, which become prominent at larger transmissions. We show that this provides complementary information about the superconducting gap structure beyond the tunneling density of states, strongly facilitating the ability to extract the gap symmetry and its relation to the underlying crystalline lattice.

View Article and Find Full Text PDF

The current response to an electromagnetic field in a Weyl or Dirac semimetal becomes nonlocal due to the chiral anomaly activated by an applied static magnetic field. The nonlocality develops under the conditions of the normal skin effect and is related to the valley charge imbalance generated by the joint effect of the electric field of the impinging wave and the static magnetic field. We elucidate the signatures of this nonlocality in the transmission of electromagnetic waves.

View Article and Find Full Text PDF

Hydrodynamic instabilities driven by a direct current are analyzed in 2D and 3D relativisticlike systems with the Dyakonov-Shur boundary conditions supplemented by a boundary condition for temperature. Besides the conventional Dyakonov-Shur instability for plasmons, we find an entropy wave instability in both 2D and 3D systems. The entropy wave instability is a manifestation of the relativisticlike nature of electron quasiparticles and a nontrivial role of the energy current in such systems.

View Article and Find Full Text PDF

We propose a mechanism to generate a static magnetization via the "axial magnetoelectric effect" (AMEE). Magnetization M∼E_{5}(ω)×E_{5}^{*}(ω) appears as a result of the transfer of the angular momentum of the axial electric field E_{5}(t) into the magnetic moment in Dirac and Weyl semimetals. We point out similarities and differences between the proposed AMEE and a conventional inverse Faraday effect.

View Article and Find Full Text PDF