Publications by authors named "P Nussbaum"

Introduction: The goal of this paper is to explore what online education and decision support tools are freely available to patients about prenatal screening.

Materials And Methods: We 1) conducted an environmental scan using Google Trends to identify and evaluate prenatal screening search terms, 2) created a list of websites and YouTube videos that would be easily accessed by a searcher and 3) characterized the information within those websites and videos, including an examination of their qualities as a decision support tool and a readability analysis.

Results: Fifty websites, containing 62 unique educational resources, and 39 YouTube videos were analyzed.

View Article and Find Full Text PDF

In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as , MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea.

View Article and Find Full Text PDF

Microbial communities are shaped by cell-cell interactions. Although archaea are often found in associations with other microorganisms, the mechanisms structuring these communities are poorly understood. Here, we report on the structure and function of haloarchaeal contractile injection systems (CISs).

View Article and Find Full Text PDF

In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as , MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea.

View Article and Find Full Text PDF

Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2.

View Article and Find Full Text PDF