A two-step protocol including an enantioselective organocatalyzed synthesis of pyrroloquinolines followed by an oxidation reaction allowed the formation of axially chiral 2-aryl-pyrroloquinolones. Thorough optimization of the experimental conditions for the second step allowed the oxygenation reaction to take place and ensured, in most cases, a central-to-axial chirality conversion with complete retention of the enantiomeric excess.
View Article and Find Full Text PDFOver the past decades, the advent of asymmetric organocatalysis has changed the way chemists think about creating or breaking chemical bonds, enabling new enantioselective strategies for functionalized molecules. The success of asymmetric organocatalysis is notably based on the existence of various activation modes, leading to countless transformations, and on the vast array of available chiral organic catalysts. Breakthroughs in this area have also been driven by selective functionalization of compounds with multiple activation sites such as cyclohexanone-derived dienones.
View Article and Find Full Text PDFBacterial infections constitute a major challenge of clinical medicine, particularly in specialties such as dermatology and dental medicine. Antiseptics and antibiotics are the main adjunctive therapies to anti-infective procedures in these specialties. However, antibacterial photodynamic therapy (PDT) has been introduced as a novel and promising alternative to conventional antibacterial approaches.
View Article and Find Full Text PDFA series of pyrroloquinolone photosensitizers bearing different halogen substituents (Cl, Br, I) on the heterocyclic framework was studied. These structures were readily prepared through a multi-step synthetic sequence involving an oxidative protocol as an important step to access the quinolone framework. Spectroscopic characterizations and computational investigations were carried out to study the dyes before and after the oxidative step.
View Article and Find Full Text PDFThe discovery of a multiple-bond-forming process merging the singlet oxygen-mediated dearomatization of 3,4-disubstitued phenols and diastereo- and regioselective epoxidation is described. This one-pot strategy using a transition metal-free multicatalytic system comprised of rose bengal and cesium carbonate allowed the efficient formation of functionalized epoxyquinol products under mild conditions. Mechanistic investigations have been performed to shed the light on the key species involved in this transformation.
View Article and Find Full Text PDF