Electrical Impedance Tomography (EIT) is a powerful imaging tool for investigating electrical properties of tissues such as that of human bodies. The cheap, harmless and portable nature of this tool has made EIT a popular choice in many biomedical applications. However, performing EIT requires strong development at both hardware and software levels.
View Article and Find Full Text PDFA compact and efficient IC architecture is presented as an alternative to laser-trimmed precision thin-film resistors or look-up tables. The objective is to keep the device, such as a four-terminal Wheatstone bridge, but to compensate for post-manufacturing offset and to avoid the so-induced degradation of performances in terms of full-scale, non-linearity, power supply noise rejection and scale factor. Expected advantages are a reduced cost due to the electrical-only implementation and a possible on-field calibration of high-end sensors.
View Article and Find Full Text PDFPurpose: Metallic hip implants (MHI) are common in elderly patients. For pelvic cancers radiotherapy, conventional approaches consist of MHI avoidance during treatment planning, which leads, especially in case of bilateral MHI, to a decreased quality or increased complexity of the treatment plan. The aim of this study is to investigate the necessity of using avoidance sectors (AvSe) using a 2-arcs coplanar pelvic volumetric modulated arc-therapy (VMAT) planning.
View Article and Find Full Text PDFPurpose: New therapeutic options in radiotherapy (RT) are often explored in preclinical in-vivo studies using small animals. We report here on the feasibility of modern megavoltage (MV) linear accelerator (LINAC)-based RT for small animals using easy-to-use consumer 3D printing technology for dosimetric optimization and quality assurance (QA).
Methods: In this study we aimed to deliver 5×2Gy to the half-brain of a rat using a 4MV direct hemi-field X-ray beam.
Introduction: To prevent radiation pneumonitis following total body irradiation (TBI) clinicians usually use lung shield blocks. The correct position of these shields relative to the patient's lungs is usually verified via mega-voltage imaging and computed radiographic (CR) films. In order to improve this time-consuming procedure, we developed in our department a dedicated, movable, real-time imaging system for image-guided TBI.
View Article and Find Full Text PDF