Protease-cleavable peptides containing a suitable fluor/quencher (Fl/Q) pair are optically dark until cleaved by their target protease, generating fluorescence. This approach has been used with many Fl/Q pairs, but little has been reported with IRDye 800CW, a popular near-infrared (NIR) fluor. We explored the use of the azo-bond-containing Black Hole Quencher 3 (BHQ-3) as a quencher for IRDye 800CW and found that IRDye 800CW/BHQ-3 is a suitable Fl/Q pair, despite the lack of proper spectral overlap for fluorescence resonance energy transfer (FRET) applications.
View Article and Find Full Text PDFTuftsin, Thr-Lys-Pro-Arg (TKPR), is an immunostimulatory peptide with reported nervous system effects as well. We unexpectedly found that tuftsin and a higher affinity antagonist, TKPPR, bind selectively to neuropilin-1 and block vascular endothelial growth factor (VEGF) binding to that receptor. Dimeric and tetrameric forms of TKPPR had greatly increased affinity for neuropilin-1 based on competition binding experiments.
View Article and Find Full Text PDFProtein Eng Des Sel
September 2005
We describe a novel and general way of generating high affinity peptide (HAP) binders to receptor tyrosine kinases (RTKs), using a multi-step process comprising phage-display selection, identification of peptide pairs suitable for hetero-dimerization (non-competitive and synergistic) and chemical synthesis of heterodimers. Using this strategy, we generated HAPs with K(D)s below 1 nM for VEGF receptor-2 (VEGFR-2) and c-Met. VEGFR-2 HAPs bound significantly better (6- to 500-fold) than either of the individual peptides that were used for heterodimer synthesis.
View Article and Find Full Text PDF