Enzyme-based depolymerization of plastics, including polyesters, has emerged as a promising approach for plastic waste recycling and reducing environmental plastic pollution. Currently, most of the known polyester-degrading enzymes are represented by a few natural and engineered PETases from the carboxylesterase family V. To identify novel groups of polyesterases, we selected 25 proteins from the carboxylesterase family IV, which share 22 % to 80 % sequence identity to the metagenomic thermophilic polyesterase IS12.
View Article and Find Full Text PDFA mesophilic, hyperacidophilic archaeon, strain M1, was isolated from a rock sample from Vulcano Island, Italy. Cells of this organism were cocci with an average diameter of 1 µm. Some cells possessed filaments.
View Article and Find Full Text PDFFamily GH1 glycosyl hydrolases are ubiquitous in prokaryotes and eukaryotes and are utilized in numerous industrial applications, including bioconversion of lignocelluloses. In this study, hyperacidophilic archaeon Cuniculiplasma divulgatum (S5T=JCM 30642T) was explored as a source of novel carbohydrate-active enzymes. The genome of C.
View Article and Find Full Text PDFUrban wastewater treatment plants (WWTP) represent key point-source discharges of microplastics (MP) into the environment, however, little is known about the microbial carrying capacity of plastics travelling through them. The purpose of this study was to quantify the number of cells that become associated with MP at different locations within a WWTP, and to assess differences in microbiome communities. We conducted a field experiment incubating low density polyethylene (LDPE) MP beads in WWTP influent and effluent, as well as tracking free floating beads during passage in wastewater from a large municipal hospital to an urban WWTP, where they were subsequently recovered.
View Article and Find Full Text PDF