Publications by authors named "P N Flegontov"

During the Hungarian Conquest in the 10th century CE, the early medieval Magyars, a group of mounted warriors from Eastern Europe, settled in the Carpathian Basin. They likely introduced the Hungarian language to this new settlement area, during an event documented by both written sources and archaeological evidence. Previous archaeogenetic research identified the newcomers as migrants from the Eurasian steppe.

View Article and Find Full Text PDF

Our knowledge of human evolutionary history has been greatly advanced by paleogenomics. Since the 2020s, the study of ancient DNA has increasingly focused on reconstructing the recent past. However, the accuracy of paleogenomic methods in resolving questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation remains an open question.

View Article and Find Full Text PDF

The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga.

View Article and Find Full Text PDF

Paleogenomics has expanded our knowledge of human evolutionary history. Since the 2020s, the study of ancient DNA has increased its focus on reconstructing the recent past. However, the accuracy of paleogenomic methods in answering questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation within the historical period remains an open question.

View Article and Find Full Text PDF

is a statistical tool that is often used in exploratory archaeogenetic studies for finding optimal admixture models of population history. Despite its popularity, remains untested on histories in the form of admixture graphs of random topology or stepping-stone landscapes. We analyzed data from such simulations and found that while for admixture-graph-shaped histories there exist simple solutions (temporal stratification) for minimizing false findings of gene flow, in the case of stepping-stone landscapes the method generates results that do not appear suspect but are misleading: feasible models are either accurate but simplistic in the context of landscapes, or highly inaccurate in the case of multi-component models.

View Article and Find Full Text PDF