Publications by authors named "P N Dyachenko"

Adipose tissue (AT) optical properties for physiological temperatures and in vivo conditions are still insufficiently studied. The AT is composed mainly of packed cells close to spherical shape. It is a possible reason that AT demonstrates a very complicated spatial structure of reflected or transmitted light.

View Article and Find Full Text PDF

Optical clearing of the lung tissue aims to make it more transparent to light by minimizing light scattering, thus allowing reconstruction of the three-dimensional structure of the tissue with a much better resolution. This is of great importance for monitoring of viral infection impact on the alveolar structure of the tissue and oxygen transport. Optical clearing agents (OCAs) can provide not only lesser light scattering of tissue components but also may influence the molecular transport function of the alveolar membrane.

View Article and Find Full Text PDF

Optical clearing (OC) of adipose tissue has not been studied enough, although it can be promising in medical applications, including surgery and cosmetology, for example, to visualize blood vessels or increase the permeability of tissues to laser beams. The main objective of this work is to develop technology for OC of abdominal adipose tissue in vivo using hyperosmotic optical clearing agents (OCAs). The maximum OC effect (77%) was observed for ex vivo rat adipose tissue samples exposed to OCA on fructose basis for 90 minutes.

View Article and Find Full Text PDF

Objective: The aim: To pay attention of clinicians to possible lesions of the central nervous system (encephalitis) in patients with COVID-19.

Patients And Methods: Case presentation: A 44-year-old woman was admitted to our clinic because of 2-month-history of mild fever, bilateral lower lobe pneumonia, respiratory failure, generalized weakness, and some neurologic symptoms. SARS-CoV-2 RNA was detected in nasopharyngeal swab.

View Article and Find Full Text PDF

TiO thin films deposited by atomic layer deposition (ALD) at low temperatures (<100 °C) are, in general, amorphous and exhibit a smaller refractive index in comparison to their crystalline counterparts. Nonetheless, low-temperature ALD is needed when the substrates or templates are based on polymeric materials, as the deposition has to be performed below their glass transition or melting temperatures. This is the case for photonic crystals generated via ALD infiltration of self-assembled polystyrene templates.

View Article and Find Full Text PDF