The implementation of microsampling approaches for use in nonclinical discovery and development pharmaceutical studies can have a major impact on improving animal ethics through the use of fewer animals and less invasive procedures for the collection of toxicokinetic and pharmacokinetic samples. In addition, the approach offers the opportunity for obtaining improved quality of data for these studies. This can include the determination of additional timepoints and endpoints, and the ability to obtain exposure data from the same animals utilized to measure other study endpoints.
View Article and Find Full Text PDFThis analysis describes the successes, challenges and opportunities to improve global vaccine safety surveillance as observed by the Vaccine Safety Working Group from its role as a platform of exchange for stakeholders responsible for monitoring the safety of vaccines distributed through the COVAX mechanism. Three key elements considered to be essential for ongoing and future pandemic preparedness for vaccine developers in their interaction with other members of the vaccine safety ecosystem are (1) the availability of infrastructure and capacity for active vaccine safety surveillance in low-income and middle-income countries (LMICs), including the advancement of concepts of safety surveillance and risk management to vaccine developers and manufacturers from LMICs; (2) more comprehensive mechanisms to ensure timely exchange of vaccine safety data and/or knowledge gaps between public health authorities and vaccine developers and manufacturers; and (3) further implementation of the concept of regulatory reliance in pharmacovigilance. These aims would both conserve valuable resources and allow for more equitable access to vaccine safety information and for benefit/risk decision-making.
View Article and Find Full Text PDFTo better understand how amino acid sequence encodes protein structure, we engineered mutational pathways that connect three common folds (3α, β-grasp, and α/β-plait). The structures of proteins at high sequence-identity intersections in the pathways (nodes) were determined using NMR spectroscopy and analyzed for stability and function. To generate nodes, the amino acid sequence encoding a smaller fold is embedded in the structure of an ~50% larger fold and a new sequence compatible with two sets of native interactions is designed.
View Article and Find Full Text PDF