Publications by authors named "P N Blondeel"

Introduction: Advancements in resuscitative care and burn surgery have improved survival rates after extensive burn injuries, shifting focus to enhancing the quality of survival. Conventional treatment with split-thickness skin grafts (STSG) presents limitations such as donor-site morbidity, limited availability in extensive burn injuries, and hypertrophic scarring. Tissue engineering aims to address these drawbacks by developing optimal skin substitutes.

View Article and Find Full Text PDF

In order to recreate the complexity of human organs, the field of tissue engineering and regenerative medicine has been focusing on methods to build organs from the bottom up by assembling distinct small functional units consisting of a biomaterial and cells. This bottom-up engineering requires bioinks that can be assembled by 3D bioprinting and that permit fast vascularization of the construct to ensure survival of embedded cells. To this end, a small molecular weight alginate (SMWA) gel porogen is presented herein.

View Article and Find Full Text PDF

Adipose tissue engineering (ATE) has been gaining increasing interest over the past decades, offering promise for new and innovative breast reconstructive strategies. Animal-derived gelatin-methacryloyl (Gel-MA) has already been applied in a plethora of TE strategies. However, due to clinical concerns, related to the potential occurrence of immunoglobulin E-mediated immune responses and pathogen transmission, a shift towards defined, reproducible recombinant proteins has occurred.

View Article and Find Full Text PDF

Importance: Since 2005, a total of 50 face transplants have been reported from 18 centers in 11 countries. The overall survival of the grafts has not yet been established.

Objective: To assess the survival of the face transplant grafts and evaluate factors potentially influencing it.

View Article and Find Full Text PDF

The potential of recombinant materials in the field of adipose tissue engineering (ATE) is investigated using a bottom-up tissue engineering (TE) approach. This study explores the synthesis of different photo-crosslinkable gelatin derivatives, including both natural and recombinant materials, with a particular emphasis on chain growth and step growth polymerization. Gelatin type B (Gel-B) and a recombinant collagen peptide (RCPhC1) are used as starting materials.

View Article and Find Full Text PDF