There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU.
View Article and Find Full Text PDFMicroglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions.
View Article and Find Full Text PDFCurrent methods for assessing cell proliferation in 3D scaffolds rely on changes in metabolic activity or total DNA, however, direct quantification of cell number in 3D scaffolds remains a challenge. To address this issue, we developed an unbiased stereology approach that uses systematic-random sampling and thin focal-plane optical sectioning of the scaffolds followed by estimation of total cell number (StereoCount). This approach was validated against an indirect method for measuring the total DNA (DNA content); and the Bürker counting chamber, the current reference method for quantifying cell number.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
September 2022
Artificial Intelligence (AI)-based methods allow for automatic assessment of pain intensity based on continuous monitoring and processing of subtle changes in sensory signals, including facial expression, body movements, and crying frequency. Currently, there is a large and growing need for expanding current AI-based approaches to the assessment of postoperative pain in the neonatal intensive care unit (NICU). In contrast to acute procedural pain in the clinic, the NICU has neonates emerging from postoperative sedation, usually intubated, and with variable energy reserves for manifesting forceful pain responses.
View Article and Find Full Text PDF