The use of ultrashort pulse lasers in medical treatments is increasing and is already an essential tool, particularly in the treatment of eyes, bones and skin. One of the main advantages of laser treatment is that it is fast and minimally invasive. Due to the interaction of ultrashort laser pulses with matter, X-rays can be generated during the laser ablation process.
View Article and Find Full Text PDFThe electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses.
View Article and Find Full Text PDFA large range of laser-matter applications employ ultrashort pulses and high laser intensity. Such processes can lead to unrequired X-ray generation, which represents a hazardous radiation factor even for common laboratory research-grade laser systems. We present here an analysis of the radiation dose rate and X-ray spectrum emitted during ablation of a rotating copper cylinder with respect to several laser parameters.
View Article and Find Full Text PDFWe present the design, integration, and operation of the novel vacuum ultraviolet (VUV) beamline installed at the free-electron laser (FEL) FLASH. The VUV source is based on high-order harmonic generation (HHG) in gas and is driven by an optical laser system synchronized with the timing structure of the FEL. Ultrashort pulses in the spectral range from 10 to 40 eV are coupled with the FEL in the beamline FL26, which features a reaction microscope (REMI) permanent endstation for time-resolved studies of ultrafast dynamics in atomic and molecular targets.
View Article and Find Full Text PDFUltrashort pulse laser machining is subject to increase the processing speeds by scaling average power and pulse repetition rate, accompanied with higher dose rates of X-ray emission generated during laser-matter interaction. In particular, the X-ray energy range below 10 keV is rarely studied in a quantitative approach. We present measurements with a novel calibrated X-ray detector in the detection range of 2-20 keV and show the dependence of X-ray radiation dose rates and the spectral emissions for different laser parameters from frequently used metals, alloys, and ceramics for ultrafast laser machining.
View Article and Find Full Text PDF