Biomacromolecules
January 2002
Polyelectrolyte-induced domain formation in charged lipid bilayer membranes was investigated as a function of polyelectrolyte molecular weight using 2H nuclear magnetic resonance (NMR) spectroscopy. Lipid bilayers consisting of mixtures of alpha- or beta-choline-deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC-alpha-d2 or POPC-beta-d2) plus the cationic amphiphile 1,2-dioleoyl-3-(dimethylamino)propane (DODAP) were exposed to the anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSSS) of various molecular weights. Regardless of molecular weight, PSSS produced dual component 2H NMR spectra, indicating two distinct POPC populations, corresponding to PSSS-bound and PSSS-free lipid, in slow exchange with one another.
View Article and Find Full Text PDF2H NMR studies of polyelectrolyte-induced domain formation in lipid bilayer membranes are reviewed. The 2H NMR spectrum of choline-deuterated phosphatidylcholine (PC) reports on any and all sources of lipid bilayer surface charge, since these produce a conformation change in the choline head group of PC, manifest as a change in the 2H NMR quadrupolar splitting. In addition, homogeneous and inhomogeneous surface charge distributions are differentiated.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2000
31P-NMR and UV spectroscopies were used to study the interactions between cationic amphiphile-containing lipid bilayers and either a phosphorothioate oligonucleotide (OligoS) (n=21) or polyadenylic acid (PolyA) (n approximately 18,000). Multilamellar vesicles (MLVs) were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in binary mixture with either of the cationic lipids, N-[1-(2, 3-dioleoyloxy)propyl]-N',N',N'-trimethylammonium chloride (DOTAP) or cetyltrimethylammonium bromide (CTAB). A UV-difference assay showed that OligoS binding ceased above a 1:1 anion/cation ratio, while PolyA binding continued until a 2:1 ratio was reached, indicating a 'flat' conformation for bound OligoS, but not necessarily for PolyA.
View Article and Find Full Text PDFDomain formation in lipid bilayer membranes can occur through electrostatic interactions between charged lipids and oppositely charged polyelectrolytes, such as proteins or polynucleic acids. This review describes a novel method for examining such domains in lipid bilayers, based on 2H NMR spectroscopy. The 2H NMR spectrum of choline-deuterated phosphatidylcholine is sensitive to, and reports on, lipid bilayer surface charge.
View Article and Find Full Text PDFBiochim Biophys Acta
September 1998
2H-NMR spectroscopy was used to investigate the effects of polyadenylic acid (PolyA) on three aminomethyl-deuterated cationic amphiphiles: specifically, N-[1-(2,3-dioleoyloxy)propyl]-N',N',N'-trimethylammonium chloride (DOTAP-gamma-d3), 3beta-[N-(N',N',N'-trimethylaminoethane)carbamoyl] cholesterol (TC-CHOL-gamma-d3), and cetyltrimethylammonium bromide (CTAB-gamma-d9). When mixed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and incorporated into lipid bilayer membranes, each of the cationic amphiphiles yielded 2H-NMR spectra consisting of a motionally averaged Pake powder pattern. The 2H-NMR quadrupolar splitting generally increased with increasing mole fraction of cationic amphiphile in the lipid bilayer with the exception of CTAB-gamma-d9.
View Article and Find Full Text PDF