Genetic maps are an excellent tool for the analysis of important traits, the development of which is the result of the combined expression of several genes, enabling the genomic localization of the factors determining them. Such features, characterized by a normal distribution of values, are referred to as quantitative or polygenic. The analysis of their genetic background using a chromosome map is called the mapping of quantitative traits loci (QTL).
View Article and Find Full Text PDFGenetic mapping is the determination of the position and relative genetic distance between genes or molecular markers in the chromosomes of a particular species. The construction of genetic maps uses data from the genotyping of the mapping population. Among the different mapping populations used, two are relatively common: the F and recombinant inbred lines (RILs) obtained as a result of the controlled crossing of genetically diverse parental forms (e.
View Article and Find Full Text PDFStudies of the morphology and the 45S nuc rDNA phylogeny of three potentially undescribed arbuscular mycorrhizal fungi (phylum Glomeromycota) grown in cultures showed that one of these fungi is a new species of the genus in the family Diversisporaceae; the other two fungi are new species in Scutellosporaceae. sp. nov.
View Article and Find Full Text PDFAs a result of phylogenomic, phylogenetic, and morphological analyses of members of the genus , four potential new glomoid spore-producing species and , a new order, Entrophosporales, with one family, Entrophosporaceae (=Claroideoglomeraceae), was erected in the phylum Glomeromycota. The phylogenomic analyses recovered the Entrophosporales as sister to a clade formed by Diversisporales and Glomeraceae. The strongly conserved entrophosporoid morph of , provided with a newly designated epitype, was shown to represent a group of cryptic species with the potential to produce different glomoid morphs.
View Article and Find Full Text PDFPowdery mildew (PM), a common cereal disease in cultivated areas, including Europe and other temperate regions, is caused by the fungus Blumeria graminis. While PM is one of the most important wheat leaf diseases globally, rye is highly tolerant to PM. It has been reported that in barley infected with PM, polyamine oxidase (PAO) activity related to the production of hydrogen peroxide (HO) has increased, which may promote defense against biotrophic or hemibiotrophic pathogens.
View Article and Find Full Text PDF