Publications by authors named "P Mikolka"

Silica-induced lung damage may be associated with changes in distinct metabolites potentially serving as biomarkers. Due to the lack of metabolomic data from animal models, this pilot study aimed to evaluate changes in markers of inflammation and fibrosis, as well as plasma metabolites in rats at 14 and 28 days after silica instillation. Adult male Wistar rats were administered a single oropharyngeal intratracheal dose of silica suspension or sterile saline in controls.

View Article and Find Full Text PDF

Purpose: Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults. In ARDS extensive inflammation and leakage of fluid into the alveoli lead to dysregulation of pulmonary surfactant metabolism and function. Altered surfactant synthesis, secretion, and breakdown contribute to the clinical features of decreased lung compliance and alveolar collapse.

View Article and Find Full Text PDF

The inflammation present in acute respiratory distress syndrome (ARDS) and thereby associated injury to the alveolar-capillary membrane and pulmonary surfactant can potentiate respiratory failure. Even considering the high mortality rate of severe ARDS, glucocorticoids appear to be a reasonable treatment option along with an appropriate route of delivery to the distal lung. This study aimed to investigate the effect of budesonide therapy delivered intratracheally by high-frequency oscillatory ventilation (HFOV) on lung function and inflammation in severe ARDS.

View Article and Find Full Text PDF

Accumulation of reactive oxygen species during hyperoxia together with secondary bacteria-induced inflammation leads to lung damage in ventilated critically ill patients. Antioxidant N-acetylcysteine (NAC) in combination with surfactant may improve lung function. We compared the efficacy of NAC combined with surfactant in the double-hit model of lung injury.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by the rapid onset of lung inflammation Therefore, monitoring the spatial distribution of the drug directly administered to heterogeneously damaged lungs is desirable. In this work, we focus on optimizing the drug -acetylcysteine (NAC) adsorption on poly-l-lysine-modified magnetic nanoparticles (PLLMNPs) to monitor the drug spatial distribution in the lungs using magnetic resonance imaging (MRI) techniques. The physicochemical characterizations of the samples were conducted in terms of morphology, particle size distributions, surface charge, and magnetic properties followed by the thermogravimetric quantification of NAC coating and cytotoxicity experiments.

View Article and Find Full Text PDF