Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects.
View Article and Find Full Text PDFMapping the spatial distribution of crystal phases with nm-scale spatial resolution is an important characterisation task in studies of multi-phase materials. One popular approach is to use scanning precession electron diffraction which enables semi-automatic phase mapping at the nanoscale by collecting a single precession electron diffraction pattern at every probe position over regions spanning up to a few micrometers. For a successful phase mapping each diffraction pattern must be correctly identified.
View Article and Find Full Text PDFMagnetic vector electron tomography (VET) is a promising technique that enables better understanding of micro- and nano-magnetic phenomena through the reconstruction of 3D magnetic fields at high spatial resolution. Here we introduce WRAP (Wavelet Regularised A Program), a reconstruction algorithm for magnetic VET that directly reconstructs the magnetic vector potential A using a compressed sensing framework which regularises for sparsity in the wavelet domain. We demonstrate that using WRAP leads to a significant increase in the fidelity of the 3D reconstruction and is especially robust when dealing with very limited data; using datasets simulated with realistic noise, we compare WRAP to a conventional reconstruction algorithm and find an improvement of ca.
View Article and Find Full Text PDF