Publications by authors named "P Midgley"

Article Synopsis
  • 3D electron diffraction (3DED) is a technique used to analyze the structure of micro-crystals, helping to identify molecular and crystal structures.* -
  • The study focused on discovering a new ninth polymorphic form of the drug indomethacin, known as σ, which was found in a specific product formulation aimed at enhancing solubility.* -
  • Researchers also found that σ indomethacin can be created by evaporating a solvent, highlighting the importance of 3DED in drug development and formulation analysis.*
View Article and Find Full Text PDF
Article Synopsis
  • * The study uses various methods to analyze how adding tie-chains between crystalline domains can enhance electrical conductivity, achieving an impressive 4810 S cm without sacrificing the Seebeck coefficient or significantly increasing thermal conductivity.
  • * The successful approach provides a pathway for improving thermoelectric performance in a variety of semicrystalline conjugated polymers, addressing traditional trade-offs in optimizing these materials.
View Article and Find Full Text PDF

Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects.

View Article and Find Full Text PDF

Mapping the spatial distribution of crystal phases with nm-scale spatial resolution is an important characterisation task in studies of multi-phase materials. One popular approach is to use scanning precession electron diffraction which enables semi-automatic phase mapping at the nanoscale by collecting a single precession electron diffraction pattern at every probe position over regions spanning up to a few micrometers. For a successful phase mapping each diffraction pattern must be correctly identified.

View Article and Find Full Text PDF

Magnetic vector electron tomography (VET) is a promising technique that enables better understanding of micro- and nano-magnetic phenomena through the reconstruction of 3D magnetic fields at high spatial resolution. Here we introduce WRAP (Wavelet Regularised A Program), a reconstruction algorithm for magnetic VET that directly reconstructs the magnetic vector potential A using a compressed sensing framework which regularises for sparsity in the wavelet domain. We demonstrate that using WRAP leads to a significant increase in the fidelity of the 3D reconstruction and is especially robust when dealing with very limited data; using datasets simulated with realistic noise, we compare WRAP to a conventional reconstruction algorithm and find an improvement of ca.

View Article and Find Full Text PDF