Aptamers are short single strand nucleic acid sequences that exhibit high-affinity molecular recognition towards non nucleic acid targets. They offer many benefits over antibodies, but still suffer from variable affinities and stability issues. Recently, aptamers have been incorporated as functional recognition agents into molecularly imprinted polymers, a competing recognition technology, to create hybrid materials, AptaMIPs, that exhibit the benefits of both classes.
View Article and Find Full Text PDFIntestinal mucosal block is the transient reduction in iron absorption ability of intestinal epithelial cells (enterocytes) in response to previous iron exposures that occur at the cell scale. The block characteristics have been shown to depend both on iron exposure magnitude and temporality, and understanding block control will enable deeper understanding of how intestinal iron absorption contributes to pathological iron states. Three biochemical mechanisms implicated in driving the block behavior are divalent metal transporter 1 endocytosis, ferritin iron sequestration, and iron regulatory protein regulation of iron related protein expression.
View Article and Find Full Text PDFGuidelines for managing scientific data have been established under the FAIR principles requiring that data be Findable, Accessible, Interoperable, and Reusable. In many scientific disciplines, especially computational biology, both data and are key to progress. For this reason, and recognizing that such models are a very special type of "data", we argue that computational models, especially mechanistic models prevalent in medicine, physiology and systems biology, deserve a complementary set of guidelines.
View Article and Find Full Text PDF: Neuropathic pain can be triggered by chemotherapy drugs such as paclitaxel (PTX). Management of pain is limited by drugs' ineffectiveness and adverse effects. Isopulegol (ISO) is a monoterpene present in the essential oils of several aromatic plants and has promising pharmacological activities.
View Article and Find Full Text PDFHow can cellular electrophysiology measurements and mathematical modeling of ionic channels help to identify pivotal targets in disease-related cell signaling? The purpose of this review is to highlight the advantages and disadvantages of using both of these complementary techniques to determine molecular targets that may be structurally or functionally altered in a specific disease. In addition, both electrophysiology measurements and mathematical modeling may improve coordinated drug development, accelerate the prediction of new drugs, and facilitate repositioning of pharmacological agents. This review focuses on the data obtained from electrophysiology and mathematical model approaches, including intracellular recording, cellular patch clamp measurements, and the Hodgkin and Huxley equation, as key precision methodologies.
View Article and Find Full Text PDF