Understanding the molecular mechanism of the interaction of amphipathic and antimicrobial peptides with membranes is of fundamental interest, especially because of the potential of amphipathic peptides as therapeutics. The most studied amphipathic peptides in this context are certainly melittin, magainin and alamethicin, of which melittin is the only one to exhibit a powerful hemolytic and therefore toxic action. Herein we study the effect of the antimicrobial but hemolytic peptide melittin on the bending elasticity of giant unilamellar vesicles (GUVs).
View Article and Find Full Text PDFEur Phys J E Soft Matter
October 2011
We show how to greatly improve precision when determining bending elasticity of giant unilamellar vesicles. Taking advantage of the well-known quasi-spherical model of liposome flickering, we analyze the full probability distributions of the configurational fluctuations instead of limiting the analysis to the second moment measurements only as usually done in previously published works. This leads to objective criteria to reject vesicles that do not behave according to the model.
View Article and Find Full Text PDFFluorescent probes are used in membrane biophysics studies to provide information about physical properties such as lipid packing, polarity and lipid diffusion or to visualize membrane domains. However, our understanding of the effects the dyes themselves may induce on the membrane structure and properties are sparse. As mechanical properties like bending elasticity were already shown to be highly sensitive to the addition of "impurities" into the membranes, we have investigated the impact of six different commonly used fluorescent membrane probes (LAURDAN, TR-DPPE, Rh-DPPE, DiIC18, Bodipy-PC and NBD-PC) on the bending elasticity of dye containing POPC GUVs as compared to single component POPC GUVs.
View Article and Find Full Text PDFGiant unilamellar vesicles (GUVs) are well-known model systems, especially because they are easily observable using optical microscopy. In this chapter, we revisit in detail the versatile GUV electroformation protocol. We demonstrate how GUV electroformation can be adapted to various membrane systems including synthetic lipid mixtures, natural lipid extracts, and bilayers containing membrane proteins.
View Article and Find Full Text PDFWe report a small angle X-ray scattering study on the liquid phase of a series of room temperature ionic liquids and their binary mixtures. The ionic liquids studied belong to the tri-alkyl-methyl-ammonium family with bis(trifluoromethanesulfonyl)amide as the anion and were studied as a function of alkyl chain length. These ionic liquids were found to exhibit marked nanoscale ordering in their isotropic liquid state as judged from the small angle X-ray scattering.
View Article and Find Full Text PDF