Question classification is a crucial task for answer selection. Question classification could help define the structure of question sentences generated by features extraction from a sentence, such as who, when, where, and how. In this paper, we proposed a methodology to improve question classification from texts by using feature selection and word embedding techniques.
View Article and Find Full Text PDFFake news is a big problem in every society. Fake news must be detected and its sharing should be stopped before it causes further damage to the country. Spotting fake news is challenging because of its dynamics.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
October 2012
An innovative neuro-fuzzy network appropriate for fault detection and classification in a machinery condition health monitoring environment is proposed. The network, called an incremental learning fuzzy neural (ILFN) network, uses localized neurons to represent the distributions of the input space and is trained using a one-pass, on-line, and incremental learning algorithm that is fast and can operate in real time. The ILFN network employs a hybrid supervised and unsupervised learning scheme to generate its prototypes.
View Article and Find Full Text PDFInt J Neural Syst
October 2001
In this paper, a method for automatic construction of a fuzzy rule-based system from numerical data using the Incremental Learning Fuzzy Neural (ILFN) network and the Genetic Algorithm is presented. The ILFN network was developed for pattern classification applications. The ILFN network, which employed fuzzy sets and neural network theory, equips with a fast, one-pass, on-line, and incremental learning algorithm.
View Article and Find Full Text PDFAn innovative neurofuzzy network is proposed herein for pattern classification applications, specifically for vibration monitoring. A fuzzy set interpretation is incorporated into the network design to handle imprecise information. A neural network architecture is used to automatically deduce fuzzy if-then rules based on a hybrid supervised learning scheme.
View Article and Find Full Text PDF