The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.
View Article and Find Full Text PDFTransmission optical diffraction gratings composed of periodic slices of a ferromagnetic liquid crystal and a conventional photoresist polymer are demonstrated. Dependence of diffraction efficiencies of various diffraction orders on an in-plane external magnetic field is investigated. It is shown that diffraction properties can be effectively tuned by magnetic fields as low as a few mT.
View Article and Find Full Text PDFOne of the advantages of anisotropic soft materials is that their structures and, consequently, their properties can be controlled by moderate external fields. Whereas the control of materials with uniform orientational order is straightforward, manipulation of systems with complex orientational order is challenging. We show that a variety of structures of an interesting liquid material, which combine chiral orientational order with ferromagnetic one, can be controlled by a combination of small magnetic and electric fields.
View Article and Find Full Text PDF