Transcriptional mechanisms epigenetically-regulated in tumoral tissues point out new targets for anti-cancer therapies. Carnitine palmitoyl transferase I (CPT1) is the rate-limiting enzyme in the transport of long-chain fatty acids for β-oxidation. Here we identified the tumor specific nuclear CPT1A as a product of the transcript variant 2, that doesn't retain the classical transferase activity and is strongly involved in the epigenetic regulation of cancer pro-survival, cell death escaping and tumor invasion pathways.
View Article and Find Full Text PDFBackground: Acute myocardial infarction (AMI), is related to a diffuse active inflammation of the coronary tree associated with rupture of one of the multiple vulnerable plaques. The presence of soluble mediators of inflammation with their synergic or antagonistic actions coordinates the physiological response determining the plaque fate and the fatal event. The present study focus on the cytokines network operating in human coronary plaques of patients died from AMI and controls, pointing out that coronaries of AMI patients produce PTX3 protein twice as that of controls and express high level of PTX3 mRNA.
View Article and Find Full Text PDFFractalkine is a proinflammatory chemokine that participates in atherosclerotic process mediating the interactions of vascular cells and leukocytes and selective recruitment of Th1 lymphocytes, through interaction with CX3CR1 receptor. The polymorphism of the fractalkine receptor 280M-containing haplotype, which codifies for a receptor with minor expression and with a reduced binding capability, represents a novel protective factor of atherosclerotic disease. We investigated the association among CX3CR1 genotype, the inflammatory infiltrate subpopulations recruited in the plaque, and the in situ expression of fractalkine and its receptor, in patients who died of myocardial infarction (AMI) compared with subjects who died of noncardiac causes.
View Article and Find Full Text PDFThe influence of the microenvironment through the various steps of cancer progression is signed by different cytokines and growth factors, that could directly affect cell proliferation and survival, either in cancer and stromal cells. In colon cancer progression, the cooperation between hypoxia, IL-6 and VEGF-A165 could regulate the DNA repair capacity of the cell, whose impairment is the first step of colon cancer development. This cooperation redirects the activity of proteins involved in the metabolic shift and cell death, affecting the cell fate.
View Article and Find Full Text PDF