Background: FLASH radiation therapy (RT) offers a promising avenue for the broadening of the therapeutic index. However, to leverage the full potential of FLASH in the clinical setting, an improved understanding of the biological principles involved is critical. This requires the availability of specialized equipment optimized for the delivery of conventional (CONV) and ultra-high dose rate (UHDR) irradiation for preclinical studies.
View Article and Find Full Text PDFPurpose: The Audiovisual-Assisted Therapeutic Ambience in Radiotherapy (AVATAR) trial was a prospective multicenter study (NCT03991156) examining the combination of video immersion with radiation therapy and was successfully conducted through the collaboration of pediatric radiation oncology teams at 10 institutions independent of any pre-existing consortium. We sought to analyze and report the methodology of trial conception and development, process map, and cost.
Methods And Materials: The study enrolled patients aged 3 to 10 years preparing to undergo radiation therapy, integrated the combination of AVATAR-based video immersion with radiation therapy at each institution, and offered AVATAR use as an alternative to anesthesia, with rates of anesthesia use and outcomes of serial standardized anxiety and quality-of-life assessments assessed among the 81 children enrolled.
Radiother Oncol
December 2024
Background And Purpose: Ultra-high dose-rate radiotherapy (FLASH) has been shown to mitigate normal tissue toxicities associated with conventional dose rate radiotherapy (CONV) without compromising tumor killing in preclinical models. A prominent challenge in preclinical radiation research, including FLASH, is validating both the physical dosimetry and the biological effects across multiple institutions.
Materials And Methods: We previously demonstrated dosimetric reproducibility of two different electron FLASH devices at separate institutions using standardized phantoms and dosimeters.
The "FLASH effect" is an increased therapeutic index, that is, reduced normal tissue toxicity for a given degree of anti-cancer efficacy, produced by ultra-rapid irradiation delivered on time scales orders of magnitude shorter than currently conventional in the clinic for the same doses. This phenomenon has been observed in numerous preclinical in vivo tumor and normal tissue models. While the underlying biological mechanism(s) remain to be elucidated, a path to clinical implementation of FLASH can be paved by addressing several critical translational questions.
View Article and Find Full Text PDFPurpose: Only a subset of patients with severe emphysema qualify for lung volume reduction surgery or endobronchial valves. We previously demonstrated that stereotactic ablative radiation therapy of lung tumors reduces lung volume in treated lobes by creating localized lung fibrosis. We aimed to determine the safety and secondarily explore the efficacy of stereotactic irradiation for lung volume reduction (SILVR) over 18 months after intervention in patients with severe emphysema.
View Article and Find Full Text PDF