Odanacatib (ODN) is a selective and reversible inhibitor of cathepsin K (CatK) currently being developed as a once-weekly treatment for osteoporosis. In this study, we evaluated the effects of ODN on bone turnover, bone mineral density (BMD), and bone strength in the lumbar spine of estrogen-deficient, skeletally mature rhesus monkeys. Ovariectomized (OVX) monkeys were treated in prevention mode for 21 months with either vehicle, ODN 6 mg/kg, or ODN 30 mg/kg (p.
View Article and Find Full Text PDFOdanacatib (ODN) is a selective, potent and reversible inhibitor of cathepsin K (CatK) that inhibits bone loss in postmenopausal osteoporosis. Evidence from osteoclast (OC) formation from bone marrow of CatK(-/-) mice or human OC progenitors treated with ODN, demonstrated that CatK inhibition has no effect on osteoclastogenesis or survival of OCs. Although having no impact on OC activation, ODN reduces resorption activity as measured by CTx release (IC(50)=9.
View Article and Find Full Text PDFTwo cathepsin K inhibitors (CatKIs) were compared with alendronate (ALN) for their effects on bone resorption and formation in ovariectomized (OVX) rabbits. The OVX model was validated by demonstrating significant loss (9.8% to 12.
View Article and Find Full Text PDFSelective androgen receptor modulators (SARMs) are androgen receptor (AR) ligands that induce anabolism while having reduced effects in reproductive tissues. In various experimental contexts SARMs fully activate, partially activate, or even antagonize the AR, but how these complex activities translate into tissue selectivity is not known. Here, we probed receptor function using >1000 synthetic AR ligands.
View Article and Find Full Text PDFAndrogen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM.
View Article and Find Full Text PDF