The development of nuclear fusion as a safe and virtually limitless power source is receiving growing attention in the context of looming energy crisis and climate change. ITER project stands as the flagship international initiative and is advancing steadily. The construction of the Tokamak Complex is nearly finished, and the assembly of core components has begun on site.
View Article and Find Full Text PDFDuring ITER operational life, a remote-handled cask will be used to transfer In-Vessel components to the Hot Cell for maintenance, storage and decommissioning purposes. Due to the distribution of penetrations for system allocation in the facility, the radiation field of each transfer operation presents a high spatial variability; all operations must be studied independently for workers and electronics protection. In this paper, we present a fully representative approach to describe the radiation environment during the complete remote-handling scenario of In-Vessel components in the ITER facility.
View Article and Find Full Text PDF