Nuclear fission plays an important role in fundamental and applied science, from astrophysics to nuclear engineering, yet it remains a major challenge to nuclear theory. Theoretical methods used so far to compute fission observables rely on symmetry-breaking schemes where basic information on the number of particles, angular momentum, and parity of the fissioning nucleus is lost. In this Letter, we analyze the impact of restoring broken symmetries in the benchmark case of ^{240}Pu.
View Article and Find Full Text PDFLifetime measurements of excited states of the light N=52 isotones ^{88}Kr, ^{86}Se, and ^{84}Ge have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2;2^{+}→0^{+}) and B(E2;4^{+}→2^{+}) were obtained for the first time for the hard-to-reach ^{84}Ge. While the B(E2;2^{+}→0^{+}) values of ^{88}Kr, ^{86}Se saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g_{7/2}, 1h_{11/2}) space of an inert ^{78}Ni core, the value obtained for ^{84}Ge largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N≲49, extend beyond N=50.
View Article and Find Full Text PDF