Publications by authors named "P Malinsky"

Two-dimensional molybdenum disulfide (MoS) exhibits interesting properties for applications in micro and nano-electronics. The key point for sensing properties of a device is the quality of the material's surface. In this study, MoS layers were deposited on polymers by pulsed laser deposition (PLD).

View Article and Find Full Text PDF

The synthesis of carbon dots (CDs) is gaining wide-ranging interest due to their broad applicability, owing to their small size and luminescence. CDs were prepared from charcoal via a one-step process using laser ablation in liquid without the use of reagents. The adopted method was based on the use of a commercially available continuous wave (CW) laser diode emitting a 450 nm wavelength and, for the liquid, a phosphate-buffered saline (PBS) solution, routinely used in the biological field.

View Article and Find Full Text PDF

Carbon dots (CDs), owing to their excellent photoluminescent features, have been extensively studied for physics preparation methods and for biomedical and optoelectronic device applications. The assessment of the applicability of CDs in the production of luminescent polymeric composites used in LEDs, displays, sensors, and wearable devices is being pursued. The present study reports on an original, environmentally friendly, and low-cost route for the production of carbon dots with an average size of 4 nm by laser ablation in liquid.

View Article and Find Full Text PDF

Polymer-based membranes represent an irreplaceable group of materials that can be applied in a wide range of key industrial areas, from packaging to high-end technologies. Increased selectivity to transport properties or the possibility of controlling membrane permeability by external stimuli represents a key issue in current material research. In this work, we present an unconventional approach with the introduction of silver nanoparticles (AgNPs) into membrane pores, by immobilising them onto the surface of polyethyleneterephthalate (PET) foil with subsequent physical modification by means of laser and plasma radiation prior to membrane preparation.

View Article and Find Full Text PDF

Cyclic olefin copolymer (COC) is a novel type of thermoplastic polymer gaining the attention of the scientific community in electronic, optoelectronic, biomedicine and packaging applications. Despite the benefits in the use of COC such as undoubted optical transparency, chemical stability, a good water-vapor barrier and biocompatibility, its original hydrophobicity restricts its wider applicability and optimization of its performances. Presently, we report on the optical and morphological properties of the films of COC covered with Ti in selected areas.

View Article and Find Full Text PDF