We present a combined experimental and theoretical work that investigates the magnetic proximity effect at a ferromagnetic insulator-superconductor (FI-S) interface. The calculations are based on the boundary condition for diffusive quasiclassical Green's functions, which accounts for arbitrarily strong spin-dependent effects and spin mixing angles. The resulting phase diagram shows a transition from a first-order to a second-order phase transition for large spin mixing angles.
View Article and Find Full Text PDFIn conventional superconductors, electrons of opposite spins are bound into Cooper pairs. However, when the superconductor is in contact with a non-uniformly ordered ferromagnet, an exotic type of superconductivity can appear at the interface, with electrons bound into three possible spin-triplet states. Triplet pairs with equal spin play a vital role in low-dissipation spintronics.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2016
Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron-hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime.
View Article and Find Full Text PDFWe study thermal and charge transport in a three-terminal setup consisting of one superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity.
View Article and Find Full Text PDF