Neutrophil extracellular traps (NETs) contribute to the pathophysiology of multiple inflammatory and autoimmune diseases. Targeting the NETosis pathway has demonstrated significant therapeutic potency in various disease models. Here, we describe a first-in-class monoclonal antibody (CIT-013) with high affinity for citrullinated histones H2A and H4, which inhibits NETosis and reduces tissue NET burden with significant anti-inflammatory consequences.
View Article and Find Full Text PDFBackground: Accumulating preclinical data indicate that targeting the SIRPα/CD47 axis alone or in combination with existing targeted therapies or immune checkpoint inhibitors enhances tumor rejection. Although several CD47-targeting agents are currently in phase I clinical trials and demonstrate activity in combination therapy, high and frequent dosing was required and safety signals (acute anemia, thrombocytopenia) were recorded frequently as adverse events. Based on the restricted expression pattern of SIRPα we hypothesized that antibodies targeting SIRPα might avoid some of the concerns noted for CD47-targeting agents.
View Article and Find Full Text PDFA deficient activity of one or more of the mitochondrial oxidative phosphorylation (OXPHOS) enzyme complexes leads to devastating diseases, with high unmet medical needs. Mitochondria, and more specifically the OXPHOS system, are the main cellular production sites of Reactive Oxygen Species (ROS). Increased ROS production, ultimately leading to irreversible oxidative damage of macromolecules or to more selective and reversible redox modulation of cell signalling, is a causative hallmark of mitochondrial diseases.
View Article and Find Full Text PDFTwo very common single nucleotide polymorphisms at positions 307 and 680 in exon 10 of the FSH receptor gene have been associated with ovarian response in IVF. This observational study evaluated the role of the FSH receptor genotype in the prediction of poor response and clinical pregnancy in IVF in comparison with other markers, such as age, basal FSH, anti-Müllerian hormone and antral follicle count. In addition, the in-vitro cAMP response towards recombinant FSH in cultured granulosa cells of patients with different FSH receptor genotypes was determined.
View Article and Find Full Text PDFSubstituted 6-amino-4-phenyl-tetrahydroquinoline derivatives are described that are antagonists for the G(s)-protein-coupled human follicle-stimulating hormone (FSH) receptor. These compounds show high antagonistic efficacy in vitro using a CHO cell line expressing the human FSH receptor. Antagonist 10 also showed a submicromolar IC(50) in a more physiologically relevant rat granulosa cell assay and was found to significantly inhibit follicle growth and ovulation in an ex vivo mouse model.
View Article and Find Full Text PDF