CRISPR/Cas9 genome editing is a rapidly advancing technology that has the potential to accelerate research and development in a variety of fields. However, manual genome editing processes suffer from limitations in scalability, efficiency, and standardization. The implementation of automated systems for genome editing addresses these challenges, allowing researchers to cover the increasing need and perform large-scale studies for disease modeling, drug development, and personalized medicine.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPS cells) represent a particularly versatile stem cell type for a large array of applications in biology and medicine. Taking full advantage of iPS cell technology requires high throughput and automated iPS cell culture and differentiation. We present an automated platform for efficient and robust iPS cell culture and differentiation into blood cells.
View Article and Find Full Text PDFThe receptor tyrosine kinase c-KIT (CD117) has a key role in hematopoiesis and is a marker for endothelial and cardiac progenitor cells. In vivo, deficiency of c-KIT is lethal and therefore using CRISPR/Cas9 editing we generated heterozygous and homozygous c-KIT knockout human embryonic stem cell (ES cell) lines. The c-KIT knockout left ES cell pluripotency unaffected as shown by immunofluorescence and trilineage differentiation potential.
View Article and Find Full Text PDFHoxB8 multipotent progenitors (MPP) are obtained by expression of the estrogen receptor hormone binding domain (ERHBD) HoxB8 fusion gene in mouse BM cells. HoxB8 MPP generate (i) the full complement of DC subsets (cDC1, cDC2, and pDC) in vitro and in vivo and (ii) allow CRISPR/Cas9-mediated gene editing, for example, generating homozygous deletions in cis-acting DNA elements at high precision, and (iii) efficient gene repression by dCas9-KRAB for studying gene regulation in DC differentiation.
View Article and Find Full Text PDFWhile human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and throughput in the production of hiPSCs is needed, which can only be achieved by implementing automated solutions for cell reprogramming, and hiPSC expansion. Here, we describe the StemCellFactory, an automated, modular platform covering the entire process of hiPSC production, ranging from adult human fibroblast expansion, Sendai virus-based reprogramming to automated isolation, and parallel expansion of hiPSC clones.
View Article and Find Full Text PDF