Glycans that are abundantly displayed on vertebrate cell surface and secreted molecules are often capped with terminal sialic acids (Sias). These diverse 9-carbon-backbone monosaccharides are involved in numerous intrinsic biological processes. They also interact with commensals and pathogens, while undergoing dynamic changes in time and space, often influenced by environmental conditions.
View Article and Find Full Text PDFBacterial binding to host receptors underlies both commensalism and pathogenesis. Many streptococci adhere to protein-attached carbohydrates expressed on cell surfaces using Siglec-like binding regions (SLBRs). The precise glycan repertoire recognized may dictate whether the organism is a strict commensal versus a pathogen.
View Article and Find Full Text PDFStreptococcus gordonii and Streptococcus sanguinis are primary colonizers of tooth surfaces and are generally associated with oral health, but can also cause infective endocarditis (IE). These species express "Siglec-like" adhesins that bind sialylated glycans on host glycoproteins, which can aid the formation of infected platelet-fibrin thrombi (vegetations) on cardiac valve surfaces. We previously determined that the ability of S.
View Article and Find Full Text PDFStreptococcus oralis is a commensal viridans group streptococcus of the human oral cavity and a frequent cause of endovascular infection. Here, we report the complete whole-genome sequence of S. oralis strain SF100, which was originally isolated from the blood of a patient with infective endocarditis.
View Article and Find Full Text PDFMucins are a large family of heavily O-glycosylated proteins that cover all mucosal surfaces and constitute the major macromolecules in most body fluids. Mucins are primarily defined by their variable tandem repeat (TR) domains that are densely decorated with different O-glycan structures in distinct patterns, and these arguably convey much of the informational content of mucins. Here, we develop a cell-based platform for the display and production of human TR O-glycodomains (~200 amino acids) with tunable structures and patterns of O-glycans using membrane-bound and secreted reporters expressed in glycoengineered HEK293 cells.
View Article and Find Full Text PDF