Publications by authors named "P M Salter"

In this work, we demonstrate the use of two-photon polymerization direct laser writing in the production of continuously tuneable optical vortex beam (OV) generators in a liquid crystal (LC) layer sandwiched between glass substrates. Results are presented that show how an OV generator can be inscribed into a 20 μm-thick LC layer and how the order of the OV beam can be tuned with the application of a voltage. Importantly, only a single pair of electrodes is needed to tune the order of the vortex as the required phase profile is generated through the 3D structuring of the polymer network using the laser writing process.

View Article and Find Full Text PDF

Recently, there have been several calls for psychologists to dismantle systemic racism within the field (e.g., Buchanan et al.

View Article and Find Full Text PDF

Diamond, as the densest allotrope of carbon, displays a range of exemplary material properties that are attractive from a device perspective. Despite diamond displaying high carbon-carbon bond strength, ultrashort (femtosecond) pulse laser radiation can provide sufficient energy for highly localized internal breakdown of the diamond lattice. The less-dense carbon structures generated on lattice breakdown are subject to significant pressure from the surrounding diamond matrix, leading to highly unusual formation conditions.

View Article and Find Full Text PDF

Fabrication techniques for nitrogen-vacancy centres in diamond require the creation of Frenkel defects (vacancy-interstitial pairs) the components of which can interact with formed NV centres affecting their photophysical properties. Here we use Density Functional Theory simulations of inter-defect electronic and strain interactions to explore how the NV centre and carbon self-interstitial interact in different configurations. We find that hybridization occurs between the NV centre e-orbitals and the carbon self-interstitial when an interstitial is present on the vacancy side of the NV centre.

View Article and Find Full Text PDF