Publications by authors named "P M Panchenko"

Article Synopsis
  • A new compound, NI-SP, was created by linking a styrylpyridinium dye and a naphthalimide fluorophore using a "click" chemistry method.
  • NI-SP shows a selective fluorescent response to mercury (Hg) in water, with the efficiency of detection improved through resonance energy transfer (RET) and intramolecular charge transfer (ICT).
  • In biological tests, NI-SP was found to enter human lung cancer cells and effectively measure mercury levels within a concentration range of 0.7-6.0 μM.
View Article and Find Full Text PDF

Introduction: The sensitivity of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, particularly in preclinical rodent models, there is lacking a comprehensive longitudinal study spanning the lifespan of the mouse. We previously reported early modifications to WM using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.

View Article and Find Full Text PDF

Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain.

View Article and Find Full Text PDF

Herein, we report a new conjugate BChl-S-S-NI based on the second-generation photosensitizer bacteriochlorin (BChl) and a 4-styrylnaphthalimide fluorophore (NI), which is cleaved into individual functional fragments in the intracellular medium. The chromophores in the conjugate were cross-linked by click chemistry via a bis(azidoethyl)disulfide bridge which is reductively cleaved by the intracellular enzyme glutathione (GSH). A photophysical investigation of the conjugate in solution by using optical spectroscopy revealed that the energy transfer process is realized with high efficiency in the conjugated system, leading to the quenching of the emission of the fluorophore fragment.

View Article and Find Full Text PDF

Dyad compound bearing 1,8-naphthalimide (NI) and styrylpyridine (SP) photoactive units, in which the N-phenylazadithia-15-crown-5 ether receptor is linked with the energy donor naphthalimide chromophore, has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In an aqueous solution, selectively responds to the presence of Hg via the enhancement in the emission intensity of NI due to the inhibition of the photoinduced electron transfer from the receptor to the NI fragment. At the same time, the long wavelength fluorescence band of SP, arising as a result of resonance energy transfer from the excited NI unit, appears to be virtually unchanged upon Hg binding.

View Article and Find Full Text PDF