High entropy oxide (HEO) has shown to be a new type of catalyst support with tunable composition-function properties for many chemical reactions. However, the preparation of a metal nanoparticle catalyst supported on a metal oxide support is time-consuming and takes multiple complicated steps. Herein, we used a one-step glycine-nitrate-based combustion method to synthesize highly dispersed rhodium nanoparticles on a high surface area HEO.
View Article and Find Full Text PDFElectrochemical reduction of CO to CO offers a promising strategy for regulating the global carbon cycle and providing feedstock for the chemical industry. Understanding the origin that determines the faradaic efficiency (FE) of reduction of CO to CO is critical for developing a highly efficient electrocatalyst. Here, by constructing a single-atom Ni catalyst on nitrogen-doped winged carbon nanofiber (NiSA-NWC), we find that the single-atom Ni catalyst possesses the maximum CO FE of over 95% at -1.
View Article and Find Full Text PDFObjective: The production of class-switched high-affinity autoantibodies derived from organized germinal centers (GCs) is a hallmark of many autoimmune inflammatory diseases, including rheumatoid arthritis (RA). TANK-binding kinase 1 (TBK-1) is a serine/threonine kinase involved in the maturation of GC follicular helper T (Tfh) cells downstream of inducible costimulator signaling. We undertook this study to assess the therapeutic potential of TBK-1 inhibition using the small-molecule inhibitor WEHI-112 in antibody-dependent models of inflammatory arthritis.
View Article and Find Full Text PDFA benzhydryl tropinone oxime that is potently toxic to Trypanosoma cruzi has been previously identified. An SAR investigation determined that no part of the original compound was superfluous and all early SAR probes led to significant drops in activity. The only alteration that could be achieved without loss of activity was replacement of the aryl chloride substituent with chloro homologues.
View Article and Find Full Text PDFHigh-throughput screening of 100,000 lead-like compounds led to the identification of nine novel chemical classes of trypanothione reductase (TR) inhibitors worthy of further investigation. Hits from five of these chemical classes have been developed further through different combinations of preliminary structure-activity relationship rate probing and assessment of antiparasitic activity, cytotoxicity, and chemical and in vitro metabolic properties. This has led to the identification of novel TR inhibitor chemotypes that are drug-like and display antiparasitic activity.
View Article and Find Full Text PDF