The photoelectrochemical (PEC) water splitting reaction of bimetallic AuCu ( = 1, 0.75, 0.5, 0.
View Article and Find Full Text PDFInfra-red multiple-photon dissociation spectroscopy on Xe-tagged Re/Si clusters, [ReSi], = 3-9, reveals intense absorption features around 400 cm, along with, in some cases, additional bands in the 250-350 cm window. A survey of the potential energy surface using density functional theory in conjunction with particle swarm optimisation indicates a growth pattern based on a growing network of Si atoms wrapped around the Re centre: the Si units can be viewed as fragments of a putative 16-vertex Frank-Kasper polyhedron. The structural evolution for the [ReSi] series differs significantly from the iso-electronic Mn series studied previously, where the metal ion is typically bound externally to the surface of a growing 3-dimensional Si cluster, the differences reflecting the greater accessibility of 5d 3d electron density.
View Article and Find Full Text PDFThe interplay between constituent localized and itinerant electrons of metal clusters defines their physical and chemical properties. In turn, the electronic and geometrical structures are strongly entwined and exhibit strong size-dependent variations. Current understanding of low-energy excited states of metal clusters relies on stand-alone theoretical investigations and few comparisons with measured properties, since direct identification of low-lying states is lacking hitherto.
View Article and Find Full Text PDFThe unimolecular fragmentation channels of highly excited small cationic carbon clusters have been measured with a time-of-flight mass spectrometer after photofragmentation. The dominant channel is loss of the neutral trimer, for all C = 10-27 clusters except for = 11, 12 which decay by monomer emission, and C which shows competing loss of C and C. The results permit to quantify the role of the rotational entropy in the competition between monomer and trimer decays with the help of energies calculated with density functional theory.
View Article and Find Full Text PDFBuckminsterfullerene C has received extensive research interest since its discovery. In addition to its interesting intrinsic properties of exceptional stability and electron-accepting ability, the broad chemical tunability by decoration or substitution on the C-fullerene surface makes it a fascinating molecule. However, to date, there is uncertainty about the binding location of such decorations on the C surface, even for a single adsorbed metal atom.
View Article and Find Full Text PDF