Publications by authors named "P M Hinderliter"

We evaluated the safety and tolerability of AXA1665, a novel investigational fixed-ratio amino acid (AA) composition, the pharmacokinetics (PK) of the constituent AAs within AXA1665, and their relative bioavailability versus standard protein supplement. This study was conducted in 2 phases; in the initial phase, healthy subjects (N = 16) were randomly assigned to 4 treatment sequences (AXA1665 4.9, 9.

View Article and Find Full Text PDF

The US Environmental Protection Agency (USEPA) and other regulatory authorities have been working to utilize in vitro studies with human cells and in silico modelling to reduce the use of vertebrate animals for evaluating chemical risk. Using the Source-to-Outcome framework, a novel mathematical procedure was developed to estimate the human equivalent concentration (HEC) for inhalation risk assessment based upon the relevant aerosol characterization, respiratory dosimetry modelling, and endpoints derived from an in vitro assay using human respiratory epithelial tissue. The procedure used the retained doses at the various areas of the inhalation tract estimated from a computational fluid-particle dynamics (CFPD) model coupled with a simple clearance model.

View Article and Find Full Text PDF

Regulatory agencies are considering alternative approaches to assessing inhalation toxicity that utilizes in vitro studies with human cells and in silico modeling in lieu of additional animal studies. In support of this goal, computational fluid-particle dynamics models were developed to estimate site-specific deposition of inhaled aerosols containing the fungicide, chlorothalonil, in the rat and human for comparisons to prior rat inhalation studies and new human in vitro studies. Under bioassay conditions, the deposition was predicted to be greatest at the front of the rat nose followed by the anterior transitional epithelium and larynx corresponding to regions most sensitive to local contact irritation and cytotoxicity.

View Article and Find Full Text PDF

Paraquat dichloride (PQ) is a non-selective herbicide which has been the subject of numerous toxicology studies over more than 50 years. This paper describes the development of a physiologically-based pharmacokinetic (PBPK) model of PQ kinetics for the rat, mouse and dog, firstly to aid the interpretation of studies in which no kinetic measurements were made, and secondly to enable the future extension of the model to humans. Existing pharmacokinetic data were used to develop a model for the rat and mouse.

View Article and Find Full Text PDF

By extending our Paraquat (PQ) work to include primates we have implemented a modelling and simulation strategy that has enabled PQ pharmacokinetic data to be integrated into a single physiologically based pharmacokinetic (PBPK) model that enables more confident extrapolation to humans. Because available data suggested there might be differences in PQ kinetics between primates and non-primates, a radiolabelled study was conducted to characterize pharmacokinetics and excretion in Cynomolgus monkeys. Following single intravenous doses of 0.

View Article and Find Full Text PDF