Publications by authors named "P M Gignac"

Museum collections play a pivotal role in the advancement of biological science by preserving phenotypic and genotypic history and variation. Recently, contrast-enhanced X-ray computed tomography (CT) has aided these advances by allowing improved visualization of internal soft tissues. However, vouchered specimens could be at risk if staining techniques are destructive.

View Article and Find Full Text PDF

Amniotes feature two principal visual processing systems: the tectofugal and thalamofugal pathways. In most mammals, the thalamofugal pathway predominates, routing retinal afferents through the dorsolateral geniculate complex to the visual cortex. In most birds, the thalamofugal pathway often plays the lesser role with retinal afferents projecting to the principal optic thalami, a complex of several nuclei that resides in the dorsal thalamus.

View Article and Find Full Text PDF

The evolution of flight is a rare event in vertebrate history, and one that demands functional integration across multiple anatomical/physiological systems. The neuroanatomical basis for such integration and the role that brain evolution assumes in behavioural transformations remain poorly understood. We make progress by (i) generating a positron emission tomography (PET)-based map of brain activity for pigeons during rest and flight, (ii) using these maps in a functional analysis of the brain during flight, and (iii) interpreting these data within a macroevolutionary context shaped by non-avian dinosaurs.

View Article and Find Full Text PDF

Image processing in amniotes is usually accomplished by the thalamofugal and/or tectofugal visual systems. In laterally eyed birds, the tectofugal system dominates with functions such as color and motion processing, spatial orientation, stimulus identification, and localization. This makes it a critical system for complex avian behavior.

View Article and Find Full Text PDF

Diffusible iodine-based contrast-enhanced Computed Tomography (diceCT) is now a widely used technique for imaging metazoan soft anatomy. Turtles present a particular challenge for anatomists; gross dissection is inherently destructive and irreversible, whereas their near complete shell of bony plates, covered with keratinous scutes, presents a barrier for iodine diffusion and significantly increases contrast-enhanced CT preparation time. Consequently, a complete dataset visualizing the internal soft anatomy of turtles at high resolution and in three dimensions has not yet been successfully achieved.

View Article and Find Full Text PDF