Publications by authors named "P M Flood"

T helper (Th) 17 and regulatory T (Treg) cells are highly plastic CD4 Th cell subsets, being able not only to actively adapt to their microenvironment, but also to interconvert, acquiring mixed identity markers. These phenotypic changes are underpinned by transcriptional control mechanisms, chromatin reorganization events and epigenetic modifications, that can be hereditable and stable over time. The Ikaros family of transcription factors have a predominant role in T cell subset specification through mechanisms of transcriptional program regulation that enable phenotypical diversification.

View Article and Find Full Text PDF

Intestinal epithelial cell (IEC) death is increased in patients with inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD). This can contribute to defects in intestinal barrier function, exacerbation of inflammation, and disease immunopathogenesis. Cytokines and death receptor ligands are partially responsible for this increase in IEC death.

View Article and Find Full Text PDF

Irruptive or boom-and-bust population dynamics, also known as 'outbreaks', are an important phenomenon that has been noted in biological invasions at least since Charles Elton's classic book was published in 1958. Community-level consequences of irruptive dynamics are poorly documented and invasive species provide excellent systems for their study. African Jewelfish (Rubricatochromis letourneuxi, "jewelfish") are omnivores that demonstrate opportunistic carnivory, first reported in Florida in the 1960s and in Everglades National Park (ENP) in 2000.

View Article and Find Full Text PDF

Juvenile idiopathic arthritis is an inflammatory disease that can affect the temporomandibular joint (TMJ) and lower jaw growth. Better treatment options are needed, so this study investigated the effect of low-intensity pulsed ultrasound (LIPUS) on TMJ arthritis. Seventy-two 3-week-old male Wistar rats were microcomputed tomography (micro-CT) scanned and divided into eight groups ( = 9).

View Article and Find Full Text PDF

Human intestinal organoids are an ideal model system for studying gastrointestinal physiology and immunopathology. Altered physiology and mucosal immune response are hallmarks of numerous intestinal functional and inflammatory diseases, including inflammatory bowel disease (IBD), coeliac disease, irritable bowel syndrome (IBS), and obesity. These conditions impact the normal epithelial functions of the intestine, such as absorption, barrier function, secretion, and host-microbiome communication.

View Article and Find Full Text PDF