Publications by authors named "P M Challita"

Tissue-resident memory CD8 T (T) cells provide protection from infection at barrier sites. In the small intestine, T cells are found in at least two distinct subpopulations: one with higher expression of effector molecules and another with greater memory potential. However, the origins of this diversity remain unknown.

View Article and Find Full Text PDF

Background And Purpose: Expression of the HER2/neu proto-oncogene, a receptor-like transmembrane protein expressed at low levels on some normal cells, is markedly increased in a subset of human breast, colon, lung, and ovarian cancers. A humanized HER2/neu antibody has been tested as a therapeutic agent in several clinical trials, with promising results. We have developed a family of anti-HER2/neu fusion proteins.

View Article and Find Full Text PDF

The majority of human neuroblastomas express low to undetectable levels of major histocompatibility complex (MHC) class I and II antigens (MHC-I and -II). We studied the effects of gamma interferon (gamma-IFN) transduction on expression of these antigens in six human neuroblastoma cell lines with and without genomic amplification of the N-myc oncogene. All six were stably transduced with an MoMLV-based gamma-IFN retroviral vector (DAh gamma-IFN).

View Article and Find Full Text PDF

Infection by murine retroviruses in embryonic carcinoma (EC) and embryonic stem cells is highly restricted. The transcriptional unit of the Moloney murine leukemic virus (MoMuLV) long terminal repeat (LTR) is inactive in EC and embryonic stem cells in association with increased proviral methylation. In this study, expression in F9 EC cells was achieved from novel retroviral vectors containing three modifications in the MoMuLV-based retroviral vector: presence of the myeloproliferative sarcoma virus LTR, substitution of the primer binding site, and either deletion of a negative control region at the 5' end of the LTR or insertion of a demethylating sequence.

View Article and Find Full Text PDF

Gaucher disease is an inherited lysosomal storage disease in which the loss in functional activity of glucocerebrosidase (GC) results in the storage of its lipid substrate in cells of the macrophage lineage. A gene therapy approach involving retroviral transduction of autologous bone marrow (BM) followed by transplantation has been recently approved for clinical trial. Amelioration of the disease symptoms may depend on the replacement of diseased macrophages with incoming cells expressing human GC; however, the processes of donor cell engraftment and vector gene expression have not been addressed at the cellular level in relevant tissues.

View Article and Find Full Text PDF