PLoS One
October 2024
Accurate and efficient segmenting of vertebral bodies, muscles, and discs is crucial for analyzing various spinal diseases. However, traditional methods are either laborious and time-consuming (manual segmentation) or require extensive training data (fully automatic segmentation). FastCleverSeg, our proposed semi-automatic segmentation approach, addresses those limitations by significantly reducing user interaction while maintaining high accuracy.
View Article and Find Full Text PDFTo train an artificial neural network model using 3D radiomic features to differentiate benign from malignant vertebral compression fractures (VCFs) on MRI. This retrospective study analyzed sagittal T1-weighted lumbar spine MRIs from 91 patients (average age of 64.24 ± 11.
View Article and Find Full Text PDFThe use of routine magnetic resonance imaging (MRI) to potentially assess skeletal fragility has been widely studied in osteoporosis. The aim of this study was to evaluate bone texture attributes (TA) from routine lumbar spine (LS) MRI and their correlation with vertebral fragility fractures (VFF) and bone mineral density (BMD). Sixty-four post-menopausal women were submitted to LS densitometry, total spine radiographs, and routine T2-weighted LS MRI.
View Article and Find Full Text PDFVertebral Compression Fracture (VCF) occurs when the vertebral body partially collapses under the action of compressive forces. Non-traumatic VCFs can be secondary to osteoporosis fragility (benign VCFs) or tumors (malignant VCFs). The investigation of the etiology of non-traumatic VCFs is usually necessary, since treatment and prognosis are dependent on the VCF type.
View Article and Find Full Text PDF