Publications by authors named "P M A Kianian"

Background: The rapidly advancing corn breeding field calls for high-throughput methods to phenotype corn kernel traits to estimate yield and to study their genetic inheritance. Most of the existing methods are reliant on sophisticated setup, expertise in statistical models and programming skills for image capturing and analysis.

Results: We demonstrated a portable, easily accessible, affordable, panoramic imaging capturing system called Corn360, followed by image analysis using freely available software, to characterize total kernel count and different patterned kernel counts of a corn ear.

View Article and Find Full Text PDF

Background: Cellular events during meiosis can differ between inbred lines in maize. Substantial differences in the average numbers of chiasmata and double-strand breaks (DSBs) per meiotic cell have been documented among diverse inbred lines of maize: CML228, a tropical maize inbred line, B73 and Mo17, temperate maize lines. To determine if gene expression might explain these observed differences, an RNA-Seq experiment was performed on CML228 male meiocytes which was compared to B73 and Mo17 male meiocytes, where plants were grown in the same controlled environment.

View Article and Find Full Text PDF

Meiotic crossovers (COs) are not uniformly distributed across the genome. Factors affecting this phenomenon are not well understood. Although many species exhibit large differences in CO numbers between sexes, sex-specific aspects of CO landscape are particularly poorly elucidated.

View Article and Find Full Text PDF

Meiotic recombination is the most important source of genetic variation in higher eukaryotes. It is initiated by formation of double-strand breaks (DSBs) in chromosomal DNA in early meiotic prophase. The DSBs are subsequently repaired, resulting in crossovers (COs) and noncrossovers (NCOs).

View Article and Find Full Text PDF

Radiation treatment of genomes is used to generate chromosome breaks for numerous applications. This protocol describes the preparation of seeds and the determination of the optimal level of irradiation dosage for the creation of a radiation hybrid (RH) population. These RH lines can be used to generate high-resolution physical maps for the assembly of sequenced genomes as well as the fine mapping of genes.

View Article and Find Full Text PDF