Neisseria meningitidis infection still remains a major life-threatening bacterial disease worldwide. The availability of bacterial genomic sequences generated a paradigm shift in microbiological and vaccines sciences, and post-genomics (comparative genomics, functional genomics, proteomics and a combination/evolution of these techniques) played important roles in elucidating bacterial biological complexity and pathogenic traits, at the same time accelerating the development of therapeutic drugs and vaccines. This article summarizes the most recent technological and scientific advances in meningococcal biology and pathogenesis aimed at the development and characterization of vaccines against the pathogenic meningococci.
View Article and Find Full Text PDFNeisseria meningitidis infection represents a major life-threatening bacterial disease worldwide. Genomics has revolutionized every aspect of the field of microbiology. As a consequence of genome sequencing, the postgenomic era commenced 15 years ago.
View Article and Find Full Text PDFAgricultural herbicides are among the most commonly used pesticides worldwide, posing serious concerns for both humans, exposed to these chemicals through many routes, and the environment. To clarify the effects of three herbicides as commercial formulations (namely, Pointer, Silglif, and Proper Energy), parameters related to oxidative issues were investigated on an autochthonous wine yeast strain. It was demonstrated that herbicides were able to affect the enzymatic activities of catalase and superoxide dismutase, as well as to induce carbonylation and thiol oxidation as post-translational modifications of proteins.
View Article and Find Full Text PDFExpert Rev Proteomics
October 2007
Helicobacter pylori is a Gram-negative bacterium that causes ulcer, atrophic gastritis, adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Moreover, an ongoing controversial role of this bacterium infection has been suggested in the etiopathogenesis of some extradigestive diseases. The humoral response to H.
View Article and Find Full Text PDFHerbicides are released to the environment with potential ecotoxicological risks for mammals. Yeast is a good model to elucidate toxicity mechanisms. We investigated how three commercial herbicides (Proper Energy, Pointer, and Silglif) and their active ingredients (respectively, fenoxaprop-P-ethyl, tribenuron methyl, and glyphosate) can affect biological activities of an oenological Saccharomyces cerevisiae strain, which may be resident on grape vineyards of the same geographical areas where herbicides are used.
View Article and Find Full Text PDF