Proc Natl Acad Sci U S A
December 2024
Semiaquatic taxa, including humans, often swim at the air-water interface where they waste energy generating surface waves. For fully marine animals however, theory predicts the most cost-efficient depth-use pattern for migrating, air-breathing species that do not feed in transit is to travel at around 2 to 3 times the depth of their body diameter, to minimize the vertical distance traveled while avoiding wave drag close to the surface. This has rarely been examined, however, due to depth measurement resolution issues at the surface.
View Article and Find Full Text PDFHow animals navigate across the ocean to isolated targets remains perplexing greater than 150 years since this question was considered by Charles Darwin. To help solve this long-standing enigma, we considered the likely resolution of any map sense used in migration, based on the navigational performance across different scales (tens to thousands of kilometres). We assessed navigational performance using a unique high-resolution Fastloc-GPS tracking dataset for post-breeding hawksbill turtles () migrating relatively short distances to remote, isolated targets on submerged banks in the Indian Ocean.
View Article and Find Full Text PDFAdvances in biologging technology have enabled 3D dead-reckoning reconstruction of marine animal movements at spatiotemporal scales of meters and seconds. Examining high-resolution 3D movements of sharks (, N = 4; , N = 1), sea turtles (, N = 3), penguins (, N = 6), and marine mammals (, N = 4; , N = 1), we report the discovery of circling events where animals consecutively circled more than twice at relatively constant angular speeds. Similar circling behaviors were observed across a wide variety of marine megafauna, suggesting these behaviors might serve several similar purposes across taxa including foraging, social interactions, and navigation.
View Article and Find Full Text PDFThe homing journeys of nine loggerhead turtles translocated from their nesting beach to offshore release sites, were reconstructed through Argos and GPS telemetry while their water-related orientation was simultaneously recorded at high temporal resolution by multi-sensor data loggers featuring a three-axis magnetic sensor. All turtles managed to return to the nesting beach area, although with indirect routes encompassing an initial straight leg not precisely oriented towards home, and a successive homebound segment carried out along the coast. Logger data revealed that, after an initial period of disorientation, turtles were able to precisely maintain a consistent direction for several hours while moving in the open sea, even during night-time.
View Article and Find Full Text PDFIn 1873, Charles Darwin marveled at the ability of sea turtles to find isolated island breeding sites [1], but the details of how sea turtles and other taxa navigate during these migrations remains an open question [2]. Exploring this question using free-living individuals is difficult because, despite thousands of sea turtles being satellite tracked across hundreds of studies [3], most are tracked to mainland coasts where the navigational challenges are easiest. We overcame this problem by recording unique tracks of green turtles (Chelonia mydas) migrating long distances in the Indian Ocean to small oceanic islands.
View Article and Find Full Text PDF