We present a detailed study on the temperature-dependent THz spectra of the polycrystalline amino acids, L-serine and L-cysteine, for wavenumbers from 20 to 120 cm-1 and temperatures from 4 to 300 K. Even though the structure of these two amino acids is very similar, with a sulfur atom in the side chain of cysteine instead of an oxygen atom in serine, the excitation spectra are drastically different. Obviously, the vibrational dynamics strongly depend on the ability of cysteine to form sulfur-hydrogen bonds.
View Article and Find Full Text PDFDeep eutectic solvents with admixed lithium salts are considered as electrolytes in electrochemical devices, such as batteries or supercapacitors. Compared to eutectic mixtures of hydrogen-bond donors and lithium salts, their raw-material costs are significantly lower. Not much is known about glassy freezing and rotational-translation coupling of such systems.
View Article and Find Full Text PDFThe glass formation and the dipolar reorientational motions in deep eutectic solvents (DESs) are frequently overlooked, despite their crucial role in defining the room-temperature physiochemical properties. To understand the effects of these dynamics on the ionic conductivity and their relation to the mechanical properties of the DES, we conducted broadband dielectric and rheological spectroscopy over a wide temperature range on three well-established carboxylic acid-based natural DESs. These are the eutectic mixtures of choline chloride with oxalic acid (oxaline), malonic acid (maline), and phenylacetic acid (phenylaceline).
View Article and Find Full Text PDFGlass formation and reorientational motions are widespread but often-neglected features of deep eutectic solvents although both can be relevant for the technically important ionic conductivity at room temperature. Here, we investigate these properties for two mixtures of ethylene glycol and ZnCl2, which were recently considered superior electrolyte materials for application in zinc-ion batteries. For this purpose, we employed dielectric spectroscopy performed in a broad temperature range, extending from the supercooled state at low temperatures up to the liquid phase around room temperature and beyond.
View Article and Find Full Text PDFCardiac function is characterised by haemodynamic parameters in the clinical scenario. Due to recent development in imaging techniques, the clinicians focus on the quantitative assessment of left ventricular size, shape and motion patterns mostly analysed by echocardiography and cardiac magnetic resonance. Because of the physiologically known antagonistic structure and function of the heart muscle, the effective performance of the heart remains hidden behind haemodynamic parameters.
View Article and Find Full Text PDF