Lipid nanocapsules (LNCs) used as nanomedicine have been developed to enhance pharmacokinetics and decrease side effects of drugs, particularly for cancer therapies. After intravenous administration, LNCs possess an important hepatic tropism however, few data exist about their toxicity and even less after repeated exposure. This study aimed to assess the in vitro toxicity and internalization of unloaded LNCs, of 50 and 100 nm size, on HepG2 and HepaRG liver cell lines.
View Article and Find Full Text PDFPolysaccharide-based nanogels offer a wide range of chemical compositions and are of great interest due to their biodegradability, biocompatibility, non-toxicity, and their ability to display pH, temperature, or enzymatic response. In this work, we synthesized monodisperse and tunable pH-sensitive nanogels by crosslinking, through reductive amination, chitosan and partially oxidized maltodextrins, by keeping the concentration of chitosan close to its overlap concentration, i.e.
View Article and Find Full Text PDFTamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis.
View Article and Find Full Text PDFThe goal of this study was to establish a procedure for gene delivery mediated by cationic liposomes in quiescent differentiated HepaRG™ human hepatoma cells. We first identified several cationic lipids promoting efficient gene transfer with low toxicity in actively dividing HepG2, HuH7, BC2 and progenitor HepaRG™ human hepatoma cells. The lipophosphoramidate Syn1-based nanovector, which allowed the highest transfection efficiencies of progenitor HepaRG™ cells, was next used to transfect differentiated HepaRG™ cells.
View Article and Find Full Text PDF