Immunoglobulins undergo isotype switching in response to antigenic stimulation. The C(H) domains, in particular the hinge region, impose structural constraints on the interaction of antibody with antigen, especially multivalent antigens such as HIV. We previously showed that switching the IgG1 anti-HIV human monoclonal antibody (HMAb) F105 to an IgG3 resulted in significantly enhanced neutralization of HIV.
View Article and Find Full Text PDFAntibodies of chronic chagasic patients have been shown to interfere with electric and mechanical activities of cardiac embryonic myocytes in culture and with whole mammalian hearts. A mechanism proposed for this effect involves interaction of the antibodies with G-protein-linked membrane receptors, thus leading to activation of beta adrenergic and muscarinic receptors; more specifically, IgG of chagasic patients would interact with the negatively charged regions of the second extracellular loop of these receptors. We performed competition experiments to test this hypothesis.
View Article and Find Full Text PDFAnti-P antibodies present in sera from patients with chronic Chagas heart disease (cChHD) recognize peptide R13, EEEDDDMGFGLFD, which encompasses the C-terminal region of the Trypanosoma cruzi ribosomal P1 and P2 proteins. This peptide shares homology with the C-terminal region (peptide H13 EESDDDMGFGLFD) of the human ribosomal P proteins, which is in turn the target of anti-P autoantibodies in systemic lupus erythematosus (SLE), and with the acidic epitope, AESDE, of the second extracellular loop of the beta1-adrenergic receptor. Anti-P antibodies from chagasic patients showed a marked preference for recombinant parasite ribosomal P proteins and peptides, whereas anti-P autoantibodies from SLE reacted with human and parasite ribosomal P proteins and peptides to the same extent.
View Article and Find Full Text PDF