Bell-state projections serve as a fundamental basis for most quantum communication and computing protocols today. However, with current Bell-state measurement schemes based on linear optics, only two of four Bell states can be identified, which means that the maximum success probability of this vital step cannot exceed 50%. Here, we experimentally demonstrate a scheme that amends the original measurement with additional modes in the form of ancillary photons, which leads to a more complex measurement pattern, and ultimately a higher success probability of 62.
View Article and Find Full Text PDFWe formulate the problem of finding the optimal entanglement swapping scheme in a quantum repeater chain as a Markov decision process and present its solution for different repeaters' sizes. Based on this, we are able to demonstrate that the commonly used "doubling" scheme for performing probabilistic entanglement swapping of probabilistically distributed entangled qubit pairs in quantum repeaters does not always produce the best possible raw rate. Focusing on this figure of merit, without considering additional probabilistic elements for error suppression such as entanglement distillation on higher "nesting levels," our approach reveals that a power-of-two number of segments has no privileged position in quantum repeater theory; the best scheme can be constructed for any number of segments.
View Article and Find Full Text PDF